Beistellung beinhaltet:
· 1x	Platine ID CONTROL 500
· 1x	5VDC/3A Tischnetzteil zur Platine
· 1x	Raspberry Pi Compute Module 3 B+ 32GB
· 1x	RFID/Barcode-Reader (Microlight M300, vorab geliefert)

Benötigte Software Tools:
· WinSCP
· PuTTy
· Advanced IP Scanner
· Socket Test

Barcode Reader müssen vorher mit dem Hilfsprogramm "VguangConfigV2.3.17" an einem Windows-PC eingestellt werden. Dokumentation liegt im Ordner "Microlight M Series" bei

Die Barcode/QR Leser werden als HID Gerät vom Linux System erkannt:
Die Eingabe von „dmesg“ am SSH Client sollte so oder ähnlich aussehen:
[4.565975] usb 1-1.2: New USB device found, idVendor=0525, idProduct=a4ac, bcdDevice= 3.10
[4.572485] usb 1-1.2: New USB device strings: Mfr=1, Product=2, SerialNumber=0
[4.576029] usb 1-1.2: Product: HID Gadget
[4.579281] usb 1-1.2: Manufacturer: Linux 3.10.14 with dwc2-gadget
[4.589518] input: Linux 3.10.14 with dwc2-gadget HID Gadget as /devices/platform/soc/3f980000.usb/usb1/1-1/1-1.2/1-1.2:1.0/0003:0525:A4AC.0001/input/input0
[4.665772] hid-generic 0003:0525:A4AC.0001: input,hidraw0: USB HID v1.01 Keyboard [Linux 3.10.14 with dwc2-gadget HID Gadget] on usb-3f980000.usb-1.2/input0
[4.677777] input: Linux 3.10.14 with dwc2-gadget HID Gadget as /devices/platform/soc/3f980000.usb/usb1/1-1/1-1.2/1-1.2:1.1/0003:0525:A4AC.0002/input/input1
[4.694879] hid-generic 0003:0525:A4AC.0002: input,hidraw1: USB HID v1.01 Device [Linux 3.10.14 with dwc2-gadget HID Gadget] on usb-3f980000.usb-1.2/input1

Netzwerkkarte des Boards ist auf DHCP eigestellt, IP muss über IP-Scanner ermittelt werden
MAC ID: B8:27:EB:D0:33:C0 (Raspberry Pi Foundation)

Login per SSH
· User: pi
· Password: panettone

Über die URL "http://raspberry-IP:9999" können noch die zusätzlichen Netzwerk-Parameter eingestellt werden:
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
Get Settings = Abfragen der Einstellungen
Set Settings = Speichern der geänderten Einstellungen

Die gelesenen Informationen (Barcode oder RFID) werden über TCP an den angegebenen Remote Server gesendet. Der Remote Server prüft und sendet wiederum über TCP die Freigabe an das Board, damit per GPIO Pin die Drehsperre angesteuert werden kann
Ob Daten an den Remoteserver gesendet werden, lässt sich mit Hilfsprogramm „SocketTest“ überprüfen:
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]

Zusätzliche Infos:
/boot/config.txt ist für die benötigten GPIO’s angepasst
gpio=40-41=op,dh
gpio=34-39=op,dh
gpio=28-29=ip
gpio=32-33=a5
dtoverlay=i2c-rtc,ds3231
dtoverlay=uart1,txd1_pin=32,rxd1_pin=33
core_freq=250

image1.png
Local(raspberrypi) Config Setting
»
2on
e e r—
DN

Connection adés [62 7681059 |
7ot
7oz

‘Remote(server) Net Settings

image2.png
® SocketTest v 300 — O X ® SocketTestv300 | - x
Listen On Listen On
IP Address 192.168.10.97 | IP Address 192.168.10.97
Port 10001 eot | stopuistening | Port 10002 eot | stopuistening |
SockelTestv3.0 SockelTestv3.0
‘Connected Client: < 192.168.10.92[192.168.10.92] ‘Connected Client: < 192.168.10.92[192.168.10.92] >
Conversation with Clent. Conversation with Clent.
‘Sever Started on Port 10001 ‘Sever Started on Port 10002
New Client 192.168.10.92 New Client 192.168.10.92
ttoim mynetair comtr=11513741 30716641835
Send = Send =
Message[] send | Discomneat || Message Send | _Disconnect ||

